Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ling Ye* and Ying Wu

Key Laboratory for Supramolecular Structure and Materials of the Ministry of Education, Jilin
University, Changchun 130012, People's
Republic of China
Correspondence e-mail:
lingyejlu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.096$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[aquasilver(I)- μ-4,4'-bipyridine] catena-poly[[aqua(naphthalene-1,4-dicarboxylato)-silver(I)]- $\mu-4,4^{\prime}$-bipyridine] polyhydrate

The title complex, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{Ag}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.\right.$ $\left.\left.\left(\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, consists of cationic complex chains, anionic complex chains and solvent water molecules. In the cationic chain, the Ag atom adopts a trigonal coordination geometry, while the Ag atom in the anionic chain assumes a square-planar coordination geometry.

Comment

The photoluminescent property of polynuclear d^{10} metal complexes has attracted extensive interest (Chen \& Liu, 2002). Recently, a series of polynuclear d^{10} metal complexes with $1,4-$ benzenedicarboxylates has been investigated (Yaghi et al., 2003). We present here the structure of a similar Ag^{I} complex, (I), incorporating the naphthalenedicarboxylate (NDC) ligand (Vodak et al., 2001).

The structure of (I) consists of 4,4'-bipyridine-bridged cationic complex chains, anionic complex chains and solvent water molecules. A segment of the polymeric structure of (I) is shown in Fig. 1. Within the cationic chain, atom Ag 1 adopts a distorted trigonal coordination geometry, defined by two N donors from two 4,4'-bipyridine ligands and one water molecule, while in the anionic chain, atom Ag 2 has a distorted square-planar coordination geometry, formed by two N donors from two 4,4'-bipyridine ligands, one water molecule and one O atom of the NDC ligand.

The $\mathrm{Ag} 1-\mathrm{O} 2 W, \mathrm{Ag} 2-\mathrm{O} 3$ and $\mathrm{Ag} 2-\mathrm{O} 3 W$ distances (Table 1) are much shorter than the sum of the van der Waals radii and imply a bonding interaction between the Ag and O atoms, but these bonding interactions are weak, because the bond distances are much longer than the sum of the covalent radii (Ma et al., 2005). The average $\mathrm{Ag}-\mathrm{N}$ bond distance of 2.164 (2) \AA agrees with that found in a reported Ag^{I} complex with 4,4'-bipyridine (Sun et al., 2003).

Figure 1
A segment of the polymeric Ag^{1} complex chains, with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (A) $x,-1+y, z]$. The dashed line indicates the weak van der Waals interaction between Ag atoms of neighbouring chains.

The nearest $\mathrm{Ag} 1 \cdots \mathrm{Ag} 2$ separation between neighbouring polymeric chains is 3.3978 (8) \AA, which is identical to the sum of the van der Waals radii of Ag atoms and implies a weak interaction between the Ag atoms of neighbouring chains. The centroid-to-centroid separations of $3.548(2) \AA$ between parallel N 2 -pyridine and $\mathrm{N} 2(-x, 1-y, 1-z)$-pyridine rings, and 3.559 (2) A between nearly parallel N2-pyridine and N3pyridine rings, suggest the existence of $\pi-\pi$ stacking. Extensive hydrogen bonding occurs in the crystal structure of (I) (Table 2).

Experimental

A mixture of $\mathrm{AgNO}_{3}(0.170 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{NDC}(0.108 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{NaOH}(0.04 \mathrm{~g}, 1 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was stirred for 10 min at room temperature. $4,4^{\prime}$-Bipyridine $(0.090 \mathrm{~g}, 0.5 \mathrm{mmol})$ was then added to the mixture. After stirring for a further 10 min , a white precipitate was collected and dissolved in 14 M ammonia (10 ml). Single crystals of (I) were obtained by slow evaporation at room temperature (yield 55%, based on Ag). Analysis, calculated for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{Ag}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: C 48.22, H 3.52, N 7.03%; found: C 48.35, H 3.44, N 7.18\%.

Crystal data

```
[ }\textrm{Ag}(\mp@subsup{\textrm{C}}{10}{}\mp@subsup{\textrm{H}}{8}{}\mp@subsup{\textrm{N}}{2}{})(\mp@subsup{\textrm{H}}{2}{}\textrm{O})][\textrm{Ag}(\mp@subsup{\textrm{C}}{10}{}\mp@subsup{\textrm{H}}{8}{-
    N
Mr}=796.3
Triclinic, P\overline{1}
a=9.5977 (19) \AA
b=11.444 (2) \AA
c=14.018 (3) A
\alpha=78.50(3)}\mp@subsup{}{}{\circ
\beta=71.77(3) }\mp@subsup{}{}{\circ
\gamma=86.82(3)}\mp@subsup{}{}{\circ
V=1433.0(6) A A
```

Data collection
Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.506, T_{\text {max }}=0.710$
13653 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.096$
$S=1.10$
6361 reflections
430 parameters
H atoms treated by a mixture of independent and constrained refinement

6361 independent reflections 4888 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-12 \rightarrow 11$
$k=-14 \rightarrow 14$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0401 P)^{2} \\
&+0.6543 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Ag} 1-\mathrm{N} 3$	$2.165(2)$	$\mathrm{Ag} 2-\mathrm{N} 2$	$2.166(2)$
$\mathrm{Ag} 1-\mathrm{N} 4^{\mathrm{i}}$	$2.163(2)$	$\mathrm{Ag} 2-\mathrm{O} 3$	$2.826(3)$
$\mathrm{Ag} 1-\mathrm{O} 2 W$	$2.696(3)$	$\mathrm{Ag} 2-\mathrm{O} 3 W$	$2.831(3)$
${\mathrm{Ag} 2-\mathrm{N} 1^{\mathrm{i}}}^{2}$	$2.163(2)$		

Symmetry code: (i) $x, y-1, z$.

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} W 11 \cdots \mathrm{O} 1^{\text {ii }}$	0.86 (5)	2.14 (5)	2.904 (4)	148 (4)
$\mathrm{O} 1 W-\mathrm{H} W 12 \cdots \mathrm{O} 2^{\text {iii }}$	0.79 (4)	2.03 (4)	2.790 (5)	162 (4)
$\mathrm{O} 2 W-\mathrm{H} W 21 \cdots \mathrm{O} 3$	0.82 (4)	2.02 (5)	2.825 (4)	170 (4)
$\mathrm{O} 2 W-\mathrm{H} W 22 \cdots \mathrm{O} 1 W^{\text {iv }}$	0.82 (4)	2.09 (4)	2.900 (5)	171 (4)
$\mathrm{O} 3 W-\mathrm{HW} 31 \cdots \mathrm{O}^{\text {v }}$	0.84 (6)	1.99 (6)	2.812 (4)	163 (6)
$\mathrm{O} 3 W-\mathrm{H} W 32 \cdots \mathrm{O} 1 W^{\text {vi }}$	0.82 (4)	2.03 (4)	2.831 (5)	166 (4)

Symmetry codes: (ii) $-x+1,-y+1,-z$; (iii) $x, y+1, z$; (iv) $-x+1,-y+1,-z+1$;
(v) $x-1, y, z ;$ (vi) $-x,-y+1,-z+1$.

H atoms on C atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were located in a difference Fourier map and refined isotropically. The highest peak in the difference map is $0.89 \AA$ away from atom Ag 1 .

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

References

Chen, X.-M. \& Liu, G.-F. (2002). Chem. Eur. J. pp. 4811-4817.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ma, J.-F., Yang, J., Li, S.-L., Song, S.-Y., Zhang, H.-J., Wang, H.-S. \& Yang, K.-Y. (2005). Cryst. Growth Des. 5, 807-812.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

metal-organic papers

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, D., Cao, R., Sun, Y., Bi, W., Li, X., Wang, Y., Shi, Q. \& Li, X. (2003). Inorg. Chem. 42, 7512-7518.

Vodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M. \& Yaghi, O. M. (2001). Chem. Comm. pp. 2534-2535.
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

